Temporal Vertex Cover with a Sliding Time Window

نویسندگان

  • Eleni C. Akrida
  • George B. Mertzios
  • Paul G. Spirakis
  • Viktor Zamaraev
چکیده

Modern, inherently dynamic systems are usually characterized by a network structure, i.e. an underlying graph topology, which is subject to discrete changes over time. Given a static underlying graph G, a temporal graph can be represented via an assignment of a set of integer time-labels to every edge of G, indicating the discrete time steps when this edge is active. While most of the recent theoretical research on temporal graphs has focused on the notion of a temporal path and other “path-related” temporal notions, only few attempts have been made to investigate “non-path” temporal graph problems. In this paper, motivated by applications in sensor and in transportation networks, we introduce and study two natural temporal extensions of the classical problem Vertex Cover. In our first problem, Temporal Vertex Cover, the aim is to cover every edge at least once during the lifetime of the temporal graph, where an edge can only be covered by one of its endpoints at a time step when it is active. In our second, more pragmatic variation Sliding Window Temporal Vertex Cover, we are also given a natural number ∆, and our aim is to cover every edge at least once at every ∆ consecutive time steps. In both cases we wish to minimize the total number of “vertex appearances” that are needed to cover the whole graph. We present a thorough investigation of the computational complexity and approximability of these two temporal covering problems. In particular, we provide strong hardness results, complemented by various approximation and exact algorithms. Some of our algorithms are polynomial-time, while others are asymptotically almost optimal under the Exponential Time Hypothesis (ETH) and other plausible complexity assumptions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FDiBC: A Novel Fraud Detection Method in Bank Club based on Sliding Time and Scores Window

One of the recent strategies for increasing the customer’s loyalty in banking industry is the use of customers’ club system. In this system, customers receive scores on the basis of financial and club activities they are performing, and due to the achieved points, they get credits from the bank. In addition, by the advent of new technologies, fraud is growing in banking domain as well. Therefor...

متن کامل

Adaptive Segmentation with Optimal Window Length Scheme using Fractal Dimension and Wavelet Transform

In many signal processing applications, such as EEG analysis, the non-stationary signal is often required to be segmented into small epochs. This is accomplished by drawing the boundaries of signal at time instances where its statistical characteristics, such as amplitude and/or frequency, change. In the proposed method, the original signal is initially decomposed into signals with different fr...

متن کامل

Thesis for the degree Master of Science

We study the well known vertex cover problem in various data streaming settings. Our first result considers a special family of graphs, the Vertex-Disjoint Paths (V DP ) family. We say that a graph G is in the V DP family if the edges of G are a union of vertex disjoint paths. For a V DP graph with n vertices given in a dynamic stream, in which both insertions and deletions are allowed, we prov...

متن کامل

Mining Frequent Patterns in Uncertain and Relational Data Streams using the Landmark Windows

Todays, in many modern applications, we search for frequent and repeating patterns in the analyzed data sets. In this search, we look for patterns that frequently appear in data set and mark them as frequent patterns to enable users to make decisions based on these discoveries. Most algorithms presented in the context of data stream mining and frequent pattern detection, work either on uncertai...

متن کامل

Real time cardiac MRI: spline-based spatio-temporal reconstruction of spiral data

We propose a novel reconstruction method using a spline-based image model in both spatial and temporal dimensions that takes the advantage of the precise timing of each k-space sample to reconstruct image series at high time frames, independently from the original sampling rate of data and avoiding the temporal blurring that can affect other reconstruction methods like sliding window. While MRI...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.07103  شماره 

صفحات  -

تاریخ انتشار 2018